
Copyright 2002 Stephen J. Mellor and Marc J. Balcer. All rights reserved
bp.001 6/19/02 1 / 4

Using BridgePoint 5.1 for Executable UML

We had three primary goals in constructing the models in Executable UML:

• First the reader must be able to execute the models. This means the reader must be able to download
a tool (BP) and execute the models in the book, as directly as possible.

• Second, the examples in the book must be compliant with UML 1.4 and the UML Action Semantics.
• The third goal is pedagogical. The material has to be easy to understand on first reading. Details of

exactly how the models are built in practice can be delayed.

Consequently, there are some minor differences between Executable UML and BridgePoint 5.1 that we
described in this document. These differences fall into four main areas:

• Use of identifiers
• Use of referential attributes
• Action language shorthands
• Minor notational reconciliation

Use of Identifiers
We recommend you think about how each instance of a class is identifed, because it promotes better
understanding of exactly what each abstraction is. Once you have worked out exactly what an abstrac-
tion is, it may be identified by a naturally occurring combination of attributes, in which case, you should
make those attributes an identifier of the class in your model. If not, Executable UML does not require a
contrived identifier on every class. Many model compilers, however, do require every class to have an
identifier, so it is safer to include a contrived identifier anyway.

BridgePoint 5.1 and the Model Verifier work correctly without required identifiers. However, the default
settings for the Audits will give warnings about classes without identifiers. Change these settings to elim-
inate the audit warnings. Note that referential attributes make links easier to visualize in the Model Veri-
fier.

Use of Refererential Attributes
We recommend you think about how each association is formalized in the model. Generally, UML (as
distinct from Executable UML) allows and even encourages the addition of referential attributes, though
most usually as an implementation decision. Many model compilers, however, do require every associa-
tion to be formalized, so it is safer to include a the referntial attribute anyway.

BridgePoint 5.1 and the Model Verifier work correctly without referential attributes. However, the default
settings for the Audits will give warnings about relationships not formalized with referential attributes.
Change these settings to eliminate the audit warnings.

Association Classes
Because Executable UML does not require contrived identifiers and referential attributes, association
classes need not be constructed unless the association has additional attributes or a lifecycle that would
be formalized as the state machine of the association class.

BridgePoint 5.1 requires association classes for all many-to-many associations, regardless of whether the
association has additional attributes or a separate state machine. BP will not create a many-to-many
association unless the association already has an association class.

Using BridgePoint 5.1 for Executable UML

bp.001 6/19/02 2 / 4

Constrained Association Loops
Because Executable UML cannot rely on contrived identifiers and referential attributes, Executable UML
expresses constrained association loops as constraints. We recommend you think very carefully about
constrained association loops, and express them as written constraints in the relation descriptions. Few
model compilers, if any, make use of the complex metamodel that supports constrained association
loops, but it is wise to check, just in case some optimization is being made.

Action Language Shorthands
Executable UML uses BridgePoint’s Object Action Language (OAL). However, there are some differences
between the action language in the book and that supported by BridgePoint 5.1.

Class Abbreviation and Event Label Conventions
The book always uses a class abbreviation equal to the class name itself, while OAL uses class abbrevia-
tions (keyletters) and event labels (keyletter + number) rather than class names and event names. For the
following examples, assume two classes: Dog (keyletter D) and DogOwner (keyletter DO).

1. The BP create object statement uses the class abbreviation, not the class name:

2. BP navigation expressions use the class abbreviation, not the class name:

3. BP generate statements use the class abbreviation in addition to the class name

Note that BP 5.1 limits the class keyletter to 15 characters.

Generalization Hierarchy Action Language Shorthands
The action language used in Executable UML has some additional shorthands. Some of which come
about as a consequence of treating an object as a single entity conforming to several classes, and other
are mere shorthands designed to make the models smaller on the page. There is no requirement to use
these shorthands.

Book statement BP 5 equivalent

create object instance myDog of Dog; create object instance myDog of D;

Book statement BP 5 equivalent

select one owner related by myDog->DogOwner[R1] select one owner related by myDog->DO[R1]

Book statement BP 5 equivalent

generate D1:bark to myDog; generate D1:bark to myDog;]

Using BridgePoint 5.1 for Executable UML

bp.001 6/19/02 3 / 4

1. There is no single statement in BP to create an object of a subclass and superclass. Instead, create
each object separately and relate them

2. BP supports compound generalization by creating each object separately and relating them.

3. BP supports reclassificationby deleting the old subclass and creating the new one.

This same sequence is required when reclassifying objects with state machines. The final state of the
old subclass must unrelate the subclass from the superclass and send a creation signal to create the
new subclass. The initial state of the new subclass must look up the superclass using an identifier
and relate itself to the superclass. See the Clerk examples in the online bookstore case study for
examples.

Association Class Action Language Shorthands
The following shorthands are used in association classes.

1. In BP linkobjects and the link are created separately. The link object must be created first and then
the link is made “using” the link object. Linking without the link object does not create the link
object by default, it is an error.

Book statement BP 5 equivalent

create object instance shipClerk of ShippingClerk; create object instance shipClerk of ShippingClerk;
create object instance whClerk of WarehouseClerk;
relate shipClerk to whClerk across R27;

Book statement BP 5 equivalent

create object instance newBook
of (BookProduct, SpecialOrderProduct);

create object instance newBook of BookProduct;
create object instance newProduct of Product;
create object instance newStkProd of StockedProduct;
relate newBook to newProduct across R11;
relate newProduct to newStkProd across R12;

Book statement BP 5 equivalent

reclassify theClerk as OffDutyClerk; select one whClerk related by
theClerk->WarehouseClerk[R27];

unrelate whClerk from theShippingClerk;
delete object instance whClerk
create object instance newOffDutyClerk of

OffDutyClerk;
relate whClerk to newOffDutyClerk across R27;

Book statement BP 5 equivalent

relate newBook to newAuthor across R2
creating newAuthorship;

create object instance newAuthorship of Authorship;
relate newBook to newAuthor across R2

using newAuthorship;

Using BridgePoint 5.1 for Executable UML

bp.001 6/19/02 4 / 4

2. BP selects the link object that relates two association end objects by selecting with identifier and ref-
erential attribute values.

This of course requires identifiers on the two association end classes (Book and Author) and referen-
tial attributes in the association class (Authorship).

Minor Notational Differences
This section outlines differences between the diagrams shown in Executable UML and those produced
by BridgePoint 5.1

Class Diagrams
1. Derived attributes are tagged {M} in BP, and with a slash (‘/’) in the book, so as to be closer to UML.

2. Multiplicity strings always written in their fullest form in the book:
* in BP is always written 0..* in the book to avoid confusion
BP 0,1 is always written 0..1

3. Signals received by a class do not appear in the bottom compartment of the class box.

Statecharts
1. In BP, signals are labeled with the class abbreviation plus a number. These signal labels are required

in Object Action Language (OAL) statements along with the signal name. The book suppresses this
additonal information for brevity.

2. Two or more creation events are shown with distinct initial pseudostates.

Collaboration Diagrams
1. When there are events in both directions between two classes, BP draws two separate lines and sets

of arrows, while the book draws a single line.

2. BP does not produce annotated (numbered) collaboration diagrams or sequence diagrams.

Book statement BP 5 equivalent

select theAuthorship that relates
theBook to theAuthor across R2;

select any theAuthorship from instances of Authorship
where selected.authorID == theAuthor.authorID
and selected.bookID == theBook.bookID;

	Use of Identifiers
	Use of Refererential Attributes
	Association Classes
	Constrained Association Loops

	Action Language Shorthands
	Class Abbreviation and Event Label Conventions
	Generalization Hierarchy Action Language Shorthands
	Association Class Action Language Shorthands

	Minor Notational Differences
	Class Diagrams
	Statecharts
	Collaboration Diagrams

