
Copyright 2002 Stephen J. Mellor and Marc J. Balcer. All rights reserved
bp.001 6/10/02 1 / 4

Using BridgePoint 5.1 for Executable UML

An important goal in writing Executable UML was that the reader would be able to download a tool and
to execute the models in the book. BridgePoint, from Project Technology, provides the best implementa-
tion of Executable UML. Using BridgePoint, you can create models with the Model Builder, test them
with the Model Verifier, and translate them into source code using one of several Model Compilers.

However, another goal was to make the examples in the book compliant with UML 1.4 and the UML
Action Semantics. Consequently, there are some features in Executable UML that are not present in
BridgePoint 5.1. Some of these differences are simply changes in notation while others involve new fea-
tures in Executable UML. This document describes those changes.

Notation
Differences between the diagrams produced by BridgePoint 5.1 and those in Executable UML:

Class Diagrams
1. Derived attributes are tagged {M}

2. Multiplicity strings are different:
* means 0..*
0,1 means 0..1

3. Signals received by a class do not appear in the bottom compartment of the class box.

Statecharts
1. Signals are labeled with the class abbreviation plus a number. These signal labels are required in

Object Action Language (OAL) statements along with the signal name.

2. Two or more creation events are shown with distinct initial pseudostates.

Collaboration Diagrams
1. When there are events in both directions between two classes, BP draws two separate lines and sets

of arrows.

2. BP does not produce annotated (numbered) collaboration diagrams or sequence diagrams.

Diagrams not producedby BridgePoint
BP does not produce use case, activity, or sequence diagrams.

Semantic Differences
Other improvements introduced in Executable UML present more substantial semantic differences.

Identifiers and Referential Attributes
Executable UML does not require an identifier on every class or referential attributes to formalize every
relationship.

BridgePoint 5.1 and the Model Verifier work correctly without required identifiers and referential
attributes. However, the default settings for the Audits will give warnings about classes without identifi-

Using BridgePoint 5.1 for Executable UML

bp.001 6/10/02 2 / 4

ers and relationships not formalized with referential attributes. Change these settings to eliminate the
audit warnings.

However, identifiers and referential attributes are needed for certain types of selection statements using
association classes, for reclassification, and for referring to object instances in event parameters.

Association Classes
Executable UML does not require association classes unless the association has additional attributes or a
lifecycle that would be formalized as the state machine of the association class.

BridgePoint 5.1 requires association classes for all many-to-many associations, regardless of whether the
association has additional attributes or a separate state machine. BP will not create a many-to-many
association unless the association already has an association class.

Subclasses / superclases
In Executable UML, an object in a generalization-specialization hierarchy is an instance of both the sub-
class and the superclass. In contrast, BP 5.1 treats subclasses and superclasses as separate, but related
objects. See the Action Language section for details.

1. Subclass and superclass are separate objects. Create each object separately and relate them.

2. Creation states of a subclass must create the superclass (and other subclasses) and relate them.

3. Reclassification must be done by unrelating the subclass from the superclass in the final states and
re-relating them in the initial states

Action Language
Executable UML uses the Object Action Language (OAL). However, there are some differences between
the action language in the book and that supported by BridgePoint 5.1.

Class abbreviations and event labels
OAL uses class abbreviations (keyletters) and event labels (keyletter + number) rather than class names
and event names. For the following examples, assume two classes: Dog (keyletter D) and DogOwner
(keyletter DO).

1. The create object statement uses the class abbreviation, not the class name

create object instance myDog of D;

2. Navigation expressions use the class abbreviation, not the class name

select one owner related by myDog->DO[R1];

3. The generate statement uses the class abbreviation in addition to the class name

generate D1:bark to myDog;

A simple solution is to make the class abbreviation (keyletter) the same as the class name. Note that BP
5.1 limits the class keyletter to 15 characters.

Using BridgePoint 5.1 for Executable UML

bp.001 6/10/02 3 / 4

Additional statements not in BP 5.1
The action language in Executable UML has some additional statement forms intended to make all
actions possible without requiring identifiers and referential attributes. These statements do not exist in
BridgePoint 5.1 and their behavior must be realized differently:

1. There is no single statement to create an object of a subclass and superclass. Instead, create each
object separately and relate them

2. There is no single statement to create an object in a compound generalization. Instead, create each
object separately and relate them.

3. Reclassification is not supported as a single operation. Instead, delete the old subclass and create the
new subclass.

This same sequence is required when reclassifying objects with state machines. The final state of the
old subclass must unrelate the subclass from the superclass and send a creation signal to create the
new subclass. The initial state of the new subclass must look up the superclass using an identifier
and relate itself to the superclass. See the Clerk examples in the online bookstore case study for
examples.

Book statement BP 5 equivalent

create object instance shipClerk of ShippingClerk; create object instance shipClerk of ShippingClerk;
create object instance whClerk of WarehouseClerk;
relate shipClerk to whClerk across R27;

Book statement BP 5 equivalent

create object instance newBook
of (BookProduct, SpecialOrderProduct);

create object instance newBook of BookProduct;
create object instance newProduct of Product;
create object instance newStkProd of StockedProduct;
relate newBook to newProduct across R11;
relate newProduct to newStkProd across R12;

Book statement BP 5 equivalent

reclassify theClerk as OffDutyClerk; select one whClerk related by
theClerk->WarehouseClerk[R27];

unrelate whClerk from theShippingClerk;
delete object instance whClerk
create object instance newOffDutyClerk of

OffDutyClerk;
relate whClerk to newOffDutyClerk across R27;

Using BridgePoint 5.1 for Executable UML

bp.001 6/10/02 4 / 4

4. Linkobjects and the link are created separately. The link object must be created first and then the link
is made “using” the link object. Linking without the link object does not create the link object by
default, it is an error.

5. Selecting the link object that relates two association end objects must be done by selecting with
identifier and referential attribute values.

This of course requires identifiers on the two association end classes (Book and Author) and referen-
tial attributes in the association class (Authorship).

Instances as event parameters
BP 5.1 does not support object instances as event data. Instead, pass an identifier of the class and re-
obtain the instance itself in the receiving state procedure.

Book statement BP 5 equivalent

relate newBook to newAuthor across R2
creating newAuthorship;

create object instance newAuthorship of Authorship;
relate newBook to newAuthor across R2

using newAuthorship;

Book statement BP 5 equivalent

select theAuthorship that relates
theBook to theAuthor across R2;

select any theAuthorship from instances of Authorship
where selected.authorID == theAuthor.authorID
and selected.bookID == theBook.bookID;

